Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Liang-Ce Rong,* Xiao-Yue Li, Chang-Sheng Yao, Hai-Ying Wang and Da-Qing Shi

Department of Chemistry, Xuzhou Normal University, Xuzhou 221116, People's Republic of China

Correspondence e-mail:
Icrong2005@yahoo.com

Key indicators

Single-crystal X-ray study
$T=193 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.038$
$w R$ factor $=0.097$
Data-to-parameter ratio $=14.3$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
A 2:1 cocrystal of 2,3-bis(4-bromophenyl)quinoxaline and 1,2-bis(4-bromophenyl)ethane-1,2-diol

The title compound, $\mathrm{C}_{20} \mathrm{H}_{12} \mathrm{Br}_{2} \mathrm{~N}_{2} \cdot 0.5 \mathrm{C}_{14} \mathrm{H}_{12} \mathrm{Br}_{2} \mathrm{O}_{2}$, was synthesized by the one-pot reaction of benzofurazan oxide and 1,2-bis(4-bromophenyl)ethane-1,2-dione induced by a low-valent titanium reagent. X-ray analysis reveals that the 1,2-bis(4-bromophenyl)ethane-1,2-diol molecule is located on an inversion centre. The molecules are linked via $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions.

Comment

Quinoxaline derivatives are an important class of nitrogencontaining heterocycles and they constitute useful intermediates in organic synthesis They have been reported for their applications in the fields of dyes (Brock et al., 1999) and pharmaceuticals (Gazit et al., 1996; Sehlstedt et al., 1998) and have also been used as building blocks for the synthesis of organic semiconductors (Dailey et al., 2001). Low-valent titanium reagents have an exceedingly high ability to promote reductive coupling of carbonyl compounds and are attracting increasing interest in organic synthesis (McMurry, 1983; Shi et al., 2003). We report here the crystal structure of the title compound, (I)

(I)

The asymmetric unit of (I) contains one 2,3-bis(4-bromophenyl)quinoxaline (bbq) molecule and one half-molecule of 1,2-bis(4-bromophenyl)ethane-1,2-diol (bbe) which is located on an inversion centre (Fig. 1). Bond lengths and angles in the molecules show normal values (Table 1). The C16-C21 and C22-C27 benzene rings form dihedral angles of 38.1 (1) and $51.8(1)^{\circ}$, respectively, with the mean quinoxaline plane. The $\mathrm{C} 2-\mathrm{C} 7$ and $\mathrm{C} 2 A-\mathrm{C} 7 A$ benzene rings are parallel by symmetry.

Two bbq molecules and one bbe molecule are connected via $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds to form a trimer. In addition, $\mathrm{C}-$ $\mathrm{H} \cdots \pi$ interactions involving the $\mathrm{C} 2-\mathrm{C} 7$ benzene ring (centroid $C g$) are observed (Table 2).

Experimental

Compound (I) was prepared by the reaction of benzofurazan oxide (2 mmol) and 1,2-bis(4-bromophenyl)ethane-1,2-dione (2 mmol) with a low-valent titanium reagent $\left(\mathrm{TiCl}_{4} / \mathrm{Zn} ; 1.1 \mathrm{ml} / 1.30 \mathrm{~g}\right)$ in THF $(15 \mathrm{ml})$. Single crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution.

Crystal data

$\mathrm{C}_{20} \mathrm{H}_{12} \mathrm{Br}_{2} \mathrm{~N}_{2} \cdot 0.5 \mathrm{C}_{14} \mathrm{H}_{12} \mathrm{Br}_{2} \mathrm{O}_{2}$	$V=1176.7(3) \AA^{3}$
$M_{r}=626.13$	$Z=2$
Triclinic, $P \overline{1}$	$D_{x}=1.767 \mathrm{Mg} \mathrm{m}^{-3}$
$a=7.8746(7) \AA$	MoKa radiation $b=11.9601(9) \AA$
$c=14.446(2) \AA$	$T=5.17 \mathrm{~mm}^{-1}$
$\alpha=66.21(11)^{\circ}$	$T=193(2) \mathrm{K}$
$\beta=83.931(17)^{\circ}$	Block, yellow
$\gamma=71.26(5)$	$0.30 \times 0.24 \times 0.13 \mathrm{~mm}$

$\beta=83.931$ (17) ${ }^{\circ}$
$0.30 \times 0.24 \times 0.13 \mathrm{~mm}$

Data collection

Rigaku Mercury diffractometer ω scans
Absorption correction: multi-scan (Jacobson, 1998)
$T_{\text {min }}=0.306, T_{\text {max }}=0.553$
(expected range $=0.283-0.511$)

Refinement

Refinement on F^{2}	H-atom parameters constrained
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$	$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0531 P)^{2}\right]$
$w R\left(F^{2}\right)=0.097$	where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$S=1.03$	$(\Delta / \sigma)_{\max }=0.001$
4295 reflections	$\Delta \rho_{\max }=1.04 \mathrm{e}^{-3}$
300 parameters	$\Delta \rho_{\min }=-0.65 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{Br} 1-\mathrm{C} 5$	$1.904(3)$	$\mathrm{N} 1-\mathrm{C} 8$	$1.373(4)$
$\mathrm{Br} 2-\mathrm{C} 19$	$1.900(4)$	$\mathrm{N} 2-\mathrm{C} 10$	$1.319(4)$
$\mathrm{Br} 3-\mathrm{C} 25$	$1.899(3)$	$\mathrm{N} 2-\mathrm{C} 9$	$1.372(4)$
$\mathrm{N} 1-\mathrm{C} 11$	$1.318(4)$		
$\mathrm{C} 11-\mathrm{N} 1-\mathrm{C} 8$	$118.6(3)$	$\mathrm{N} 2-\mathrm{C} 10-\mathrm{C} 16$	$115.5(3)$
$\mathrm{C} 10-\mathrm{N} 2-\mathrm{C} 9$	$118.6(3)$	$\mathrm{C} 11-\mathrm{C} 10-\mathrm{C} 16$	$123.5(3)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	$112.4(3)$	$\mathrm{N} 1-\mathrm{C} 11-\mathrm{C} 22$	$115.6(3)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 1^{\mathrm{i}}$	$108.3(4)$	$\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 22$	$123.5(3)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 1^{\mathrm{i}}$	$111.1(3)$		

Symmetry code: (i) $-x+2,-y,-z$.

Table 2
Hydrogen-bond geometry $\left(\AA{ }^{\circ}{ }^{\circ}\right)$.
$C g$ is the centroid of the $\mathrm{C} 2-\mathrm{C} 7$ benzene ring.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{~N} 1^{\mathrm{ii}}$	0.84	2.05	$2.882(4)$	168
$\mathrm{C} 12-\mathrm{H} 12 \cdots C g^{\text {iii }}$	0.95	2.84	$3.666(4)$	146

[^1]

Figure 1
The structure of (I), showing 40% probability displacement ellipsoids and the atom-numbering scheme. Atoms labelled with the suffix A are generated by the symmetry operation $(2-x,-y,-z)$.

H atoms were positioned geometrically and treated as riding, with an $\mathrm{O}-\mathrm{H}$ distance of $0.84 \AA$ and $\mathrm{C}-\mathrm{H}$ distances in the range $0.95-$ $1.00 \AA$, and with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$ for methyl H atoms and $1.2 U_{\text {eq }}(\mathrm{C})$ for others. The highest peak is located $0.56 \AA$ from atom H1A.

Data collection: CrystalClear (Rigaku, 2000); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku/MSC, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1999); software used to prepare material for publication: SHELXTL.

The authors thank the Natural Science Foundation of Xuzhou Normal university (grant No. 04XLB14) for financial support.

References

Brock, E. D., Lewis, D. M., Yousaf, T. I. \& Harper, H. H. (1999). (The Procter \& Gamble Company, USA) World Patent WO 9951688.
Bruker (1999). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Dailey, S., Feast, J. W., Peace, R. J., Sage, I. C., Till, S. \& Wood, E. L. (2001). J. Mater. Chem. 11, 2238-2243.
Gazit, A., App, H., McMahon, G., Chen, J., Levitzki, A. \& Bohmer, F. D. (1996). J. Med. Chem. 39, 2170-2177.

Jacobson, R. (1998). Private communication to the Rigaku Corporation, Tokyo, Japan.
McMurry, J. E. (1983). Acc. Chem. Res. 16, 405-411.
Rigaku (2000). CrystalClear. Rigaku Corporation, 3-9-12 Akishima, Tokyo, Japan.
Rigaku/MSC (2003). CrystalStructure. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
Sehlstedt, U., Aich, P., Bergman, J., Vallberg, H., Norden, B. \& Graslund, A. (1998). J. Mol. Biol. 278, 31-56.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Shi, D. Q., Rong, L. C., Wang, J. X., Zhuang, Q. Y., Wang, X. S. \& Hu, H. W. (2003). Tetrahedron Lett. 44, 3199-3201.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

[^1]: Symmetry codes: (ii) $-x+1,-y+1,-z$; (iii) $x-1, y+1, z$.

